
4TH EUROPEAN INDUSTRIAL ETHERNET AWARD 2016/2017

EPL-Viz
Visualizing Ethernet POWERLINK Traffic

Ahmad Fatoum, Denis Megerle, Joshua Schauer,
Dennis Schunder, Daniel Mensinger, Andreas Bihlmaier

Karlsruhe Institute of Technology (KIT), Germany
Email: bihlmaier@robodev.eu

Abstract—EPL-Viz is a visualization solution for
Ethernet POWERLINK networks. It enables users to
monitor the network state and narrow down the cause
of issues. Thus, helping to detect and fix bugs in MNs as
well as CNs. EPL-Viz provides various tools to analyze
live and recorded traffic in a flexible GUI. Beyond the
integrated consistency checks, users are also able to
perform custom data analysis by means of an integrated
Python interpreter.

I. INTRODUCTION

Ethernet POWERLINK (EPL) has established it-
self as one of the major field bus standards with
hard real-time guarantees on top of standard Ethernet.
Yet, debugging a stateful real-time bus can be a
daunting task: To fully reconstruct the state, out-
of-band configuration files as well as prior network
packets need to be taken into account. A task for
which, to the best of our knowledge, no automated
solutions exist.

As part of the curriculum for the B.Sc. in Com-
puter Science at the Karlsruhe Institute of Technol-
ogy, teams, of five students each, are assigned the
task of collaborating on a software project over the
course of a semester. The tasks are handed out in
the form of a customer requirement specification.
During the project, progress is discussed with a
stakeholder, who is not only the supervisor, but also
acts as the customer that has a particular interest
in the resulting product. Our stakeholder was An-
dreas Bihlmaier from the robodev GmbH and the
Intelligent Process Control and Robotics Group at
the Institute for Anthropomatics and Robotics, both
of which use Ethernet POWERLINK and CANopen
extensively.

Debugging efforts so far involved the developer
consulting the device descriptions and trying to
match them in the packet list captured by the network

analyzer Wireshark, a very time-consuming endeavor
as thousands of frames can accumulate over the
matter of seconds. This is where EPL-Viz comes into
play: Built on top of Wireshark’s EPL dissector, the
software passively monitors the network and uses the
extracted information to create an accurate model of
the state of each node on the bus, which the user
can then explore. It includes different visualization
options and a number of tools aimed at increasing
the comprehensibility of changes occurring through
each network packet as well as finding possible
network errors. This allows the user to fully focus
on error discovery, leaving the tracking, visualization
and interpretation of the data to EPL-Viz.

II. PROJECT STRUCTURE

A. Wireshark Dissector

Instead of creating our own implementation of the
EPL protocol, the existing dissector in Wireshark was
leveraged as backend. Yet, the dissector had to be sig-
nificantly extended to satisfy EPL-Viz requirements.
In particular, three features were missing:

SDO read responses aren’t matched with prior
read requests. The read request on its own only
contains the data, but no indication of its origin index
and subindex.

OD entry descriptions can’t be used to enrich
displayed information, because Wireshark doesn’t
parse XDDs.

PDOs are not partitioned because Wireshark
doesn’t track the SDOs that setup the object mapping.

We extended Wireshark to address these points,
CN state is now saved in Wireshark-specific
“conversations”, which record previous read and
write requests. Conversations can be enriched with
device descriptions read from either CANopen EDS
or POWERLINK XDD files: Indices and Subindices



Fig. 1: The patchset for EPL-Viz added 7 new Wireshark configuration options.

are tagged with the textual description in the device
profile and the data is displayed according to
the type listed therein. Finally, object mappings
configured over SDO and XDC are now taken into
account: Poll request and response payloads are no
longer shown as a single binary string. With SDO
context available, the payload is partitioned into its
constituent units and is annotated according to the
appropriate XDD. As a side effect of the refactoring
effort, a few bugs in the stock EPL dissector were
fixed.

Our patchset has been successfully merged up-
stream. Wireshark 2.4.0, scheduled for end of July
2017, will be the first stable version of Wireshark to
ship with these changes.

The new conversation mechanism also enables fu-
ture enhancements to the way Wireshark may detect
possible EPL errors, which in turn benefits EPL-Viz.

Apart from the obvious benefit of using a well-
tested protocol implementation, using Wireshark as
backend also meant that we can rely on its live
capture and file format support capabilities. This
makes EPL-Viz portable to theoretically any of the
plethora of systems supported by Wireshark itself;
given that appropriate C++ support is available.

B. EPL DataCollect

EPL DataCollect is the C++ backbone of the EPL-
Viz project. Its main task is to accumulate the data
provided by the Wireshark dissector and organize it
in line with the EPL protocol structure.

The main structure in EPL DataCollect is the
cycle, which spans multiple packets and is, after

Fig. 2: An overview of EPL DataCollects role.

aggregation, passed to all loaded plugins.

Two types of plugins are supported: C++ plugins,
which are linked into the program at compile-time
and dynamically loadable Python plugins. The latter
can be loaded just before starting a new live capture
or analyzing an offline capture file. Plugins have
full access to the network state by means of the
cycles data. Furthermore, plugins have access to a
CycleStorage, which allows them to attach data to
cycles. Thereby, they can retain historical informa-
tion and provide additional data, which GUI views
can then display to the user.

After a cycle has been processed by all plugins,
the resulting data is passed to our default graphical
frontend, EPL-Viz.

EPL DataCollect further provides an event sys-
tem, allowing communication between itself, the
plugins and the frontend. Using these, users can write
plugins that interact with the view in a way beyond
just providing data. An example usage of this is



using a Python plugin to highlight specific devices
once certain conditions are met, which can be highly
helpful to detect errors with many CNs.

In order to allow users to see a networks state
over time, EPL DataCollect takes snapshots of the
network state at fixed intervals. As this only provides
a look back at certain points in time, any non-
preserved time points are reconstructed by taking the
closest snapshot before it and applying any packets
that were sent in between that time frame. This in
turn allows for a continuous time line of the network
state, while significantly reducing the amount of
memory required to retain all states.

To ensure that consumers do not lose events and
cycles, e.g. because the frontend is not able to
process and visualize data as fast as the backend can
provide it, the consumer’s important data structures
are safeguarded by buffers that have to be queried by
consumers once they are ready to process the data.
A query will then always provide any data that has
arrived since the last query. This ensures that every
consumer gets a chance to view any and all data
provided by the network.

Frontends can make use of EPL DataCollect by
starting a capture on an interface, similar to Wire-
shark, or by loading a previously saved capture for
playback.

In case the current capture of the network (be it
a live or file capture) did not yet send a Start of
Cycle (SoC) packet and thus did not yet start the first
cycle, EPL DataCollect can optionally be configured
to use so called Pre SoC cycles. These allow the
same cycle bound interactivity in the GUI by creating
cycles out of Start of Async packets. In turn, this can
then be used to analyze network startup errors. As
soon as a Start of Cycle packet arrives, this feature is
automatically disabled to ensure the program remains
functional.

C. Plugin-API

As previously mentioned, plugins can read all cy-
cle data, network state and information accumulated
by EPL DataCollect. Python plugins can be created
right inside the GUI with the integrated KDE based
editor. Alternatively, the user can directly load an ex-
ternal script. For performance-critical tasks, plugins
can also be written in C++, which additionally have
full access to the backend on top of the cycle data
structure that the Python plugins receive.

Fig. 3: Users can extend EPL DataCollect function-
ality with both C++ and Python plugins.

Both kinds of plugins can then interact with any
given view through the event system provided by
EPL DataCollect. These events are logged to an
event log and can also be displayed on the time line,
in order to alert the user.

Furthermore, plugins can act as filters for Node
ODs. Once the filter plugins are loaded, the user
can freely switch between the set of filters during
playback and recording to narrow down the search
for essential information.

def run(self):
cy = self.getCycle()
i = int(cy.getODEntry_Sub(1,

0x6200,
1))

if i >= 20:
self.addEvent(

Events.EV_TEXT.value,
"Threshold reached!",
""

)

Fig. 4: A plugin displaying an event whenever a
specific OD entry reaches a threshold.

Sample plugins and extensive documentation are
distributed together with EPL-Viz.



Fig. 5: A screenshot of EPL-Viz.

D. EPL-Viz

EPL-Viz is the default graphical frontend to
EPL DataCollect. It is built with Qt 5.5 to ensure
a modern look and feel.

Fig. 6: The “timeline” with several plots.

The timeline (see figure 6) is the main part of
the program, presenting a historical overview of the
network. It displays the events that have occurred,
the cycle selected by the user and can also be
used to visually plot the values of data fields. The
most important feature of the timeline, however, is
synchronized interaction with all other parts of EPL-
Viz. Clicking on any particular point of time sets
the current cycle to the one selected, causing cycle-
dependent widgets to display the information for
that cycle. This makes navigation between different
points in time simple. The same also holds during
capturing live network traffic or while parsing a file.
In this case, the view will stop updating while the
backend continues working. These timepoints are
then represented by a “View” and “Backend” marker.
The main usage of the timeline is to allow the user
to easily see the network state change over time, as

well as making the discovery of time points at which
the network had experienced errors easier.

Fig. 7: The “Setup Plot” Dialog.

Users can create plots for the OD values of speci-
fied nodes, which includes the custom CycleStorage
data written by plugins. Plots can be easily set up
using the “Setup Plot” dialog (see figure 7). Plots are
displayed in the timeline, as well as in the dedicated
“Plot” Widget. An important note regarding plots:
A plot does not receive information about the time
before it was created. In case the user wants to
visualize data from before setup of the plot, EPL-Viz
provides a “Reload” functionality that reparses the
current file and thereby showing all data. Plots can
be especially useful in cases where particular values,
such as the speed of a faulty motor, are suspected



to cause problems and must be analyzed in detail.
With the addition of custom values, this allows users
to keep track of essential data. The latter is further
enhanced, given the timeline, which provides an easy
way to jump to certain parts of the plot.

Fig. 8: The settings for plots.

The plots settings window provides an overview of
all plots and their parameters. The settings provide
several other configuration options for EPL-Viz itself.
These include setting colors for identifying certain
node states and packet types, as well as configuration
of the EPL DataCollect backend. The user can also
add nodes manually, allowing custom device profiles
to be loaded and used for the nodes. The EPL-Viz
settings enable the user to choose and create multiple
profiles, which store all previously mentioned pro-
gram settings and enable to store and recall different
setups of plots and settings for handling specific
problems. The profiles can then be shared among
users or be used to restore the configuration on a
different workstation. This can be helpful when a
team is observing a certain capture file or analyz-
ing recurring problems of a specific network. Team
members can thus create and share setups that target
relevant data and make the analysis of the network
easier.

Fig. 9: The network node graph.

Another important aspect of EPL-Viz is the net-
work node graph. It gives a quick overview of the

devices that were either recognized by analyzing the
traffic or added manually by the user. It summarizes
information about CNs and their state. In situations
where a faulty device has to be identified, the color
coded visualization of each device’s status makes it
easy to spot faults. The displayed identity informa-
tion of the nodes helps to locate the exact device in
the network. Furthermore, widgets that display node-
specific data make extensive use of this graph, as a
user can select the active node by simply clicking on
it. The node OD widget is one such plugin, showing
the Object Dictionary entries of the currently selected
node. The OD description widget further makes use
of the device profile of the currently selected node,
to show the user what Object Dictionary descriptions
exist. This however requires that the required device
profile file has been specified.

Fig. 10: The Packet Visualizer.

The packets of the currently active cycle are rep-
resented by another main widget, the Packet Vi-
sualizer (see figure 10). It represents an accurate
overview over the temporal structure of a cycle. The
user can use it to see the interaction between the
nodes and spot potential problems in the timings.
Packet types are color coded. Poll requests and poll
responses are placed in a way to render the com-
munication within the cycle more understandable.
Furthermore, individual packets can be selected for
closer inspection. Clicking on one of the packets will
show its Wireshark-provided dissection. Changing
the currently selected packet can also be achieved by
selecting a packet via the full list in the “Packets”
widget or choosing one from the current cycle in
the Cycle Viewer widget. The latter grants a table
view of the same information held within the Packet
Visualizer to give a quick, minimal overview over
the essential cycle information. Here again one ma-
jor design principle of EPL-Viz is shown: Provide
multiple interlinked and synchronized visualizations
of the underlying communication data to aid human
understanding.



Fig. 11: The KTextEditor based Plugin Editor.

Additionally, EPL-Viz has a built-in Python plugin
editor (see figure 11) that allow users to create Python
plugins on the fly. This gives the user the ability to
create custom tools to better handle specific situations
and cater to specific needs for detecting and resolving
issues in a network. The editor optionally uses the
KDE’s feature rich text editor KTextEditor, which is
enabled in official EPL-Viz releases.

III. SUMMARY

EPL-Viz is a powerful and extensible approach
to analyzing, understanding and debugging POWER-
LINK setups. Through a visually appealing graphical
user interface, a Python scripting interface, numerous
plotting features and more, EPL-Viz boosts efficiency
in developing and maintaining POWERLINK net-
works.

The client-server model of Wireshark, whereby a
separate privileged binary does the network sniffing
and the GUI runs with normal privileges, not only
hardens the security of EPL-Viz, but also makes EPL-
Viz extendable for remote live capture.

Apart from the Wireshark backend which is li-
censed under the GPL 2.0, the EPL-Viz project
is licensed under the BSD 3-Clause license. The
software builds out of the box on Windows, macOS

and Linux and should be straightforward to port to
other systems supported by Wireshark.

The project’s source code and binary releases for
Windows and Linux are available at [1], where we
hope to get valuable feedback from the Ethernet
POWERLINK community.

A screencast showcasing usage of the GUI is
available at [2].

REFERENCES

[1] “EPL-Viz Repositories.” https://github.com/epl-viz.
[2] “EPL-Viz YouTube Channel.” https://www.youtube.com/

channel/UC4f3HO4aGFd5DGUphm2LKPg.

https://github.com/epl-viz
https://www.youtube.com/channel/UC4f3HO4aGFd5DGUphm2LKPg
https://www.youtube.com/channel/UC4f3HO4aGFd5DGUphm2LKPg

	Introduction
	Project structure
	Wireshark Dissector
	EPL_DataCollect
	Plugin-API
	EPL-Viz

	Summary
	References

